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Attachment on Calcium Phosphate Surface
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Abstract — In the current study, the effect of three different
treated surfaces of hydroxyapatite and p-tricalcium phosphate on
mesenchymal cell attachment has been investigated. Calcium
phosphate powders have been synthesized, uniaxially pressed,
polished and sintered. Mesenchymal cells have been seeded onto
unpolished, polished and polished-thermally etched ceramic
samples. The ceramic samples have been characterized by XRD,
FTIR and SEM. Results have shown that the best cell attachment
and morphology are on the unpolished surface indicating that
relatively rough surface is better for cell application.
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|. INTRODUCTION

Calcium  phosphate (CaP) bioceramics, such as
hydroxyapatite (Hap) and B-tricalcium phosphate (B-TCP), are
important biomaterials for dental, craniofacial and orthopedic
repairs due to their similarity to bone mineral component and
bone bonding ability to form a functional interface. Many
scientific studies are devoted to the investigation of coatings
and their surface of metallic implants [1-4]. The most popular
materials applied as metal implant coatings are calcium
phosphates due to their ability to form an apatite layer
indicating bioactive and osteoconductive properties [5-6]. The
characteristics of surface of any biomaterial are essential for
protein adsorption after a surgical procedure and subsequently
cell attachment and proliferation. In fact, there are many
methods for surface treatment and modification. The ion
implantation [7], powder abrasive treatment [8], laser
irradiation [9], plasma spraying [10] and modification with
nanoparticles [11] are named as the most popular approaches.

The bone marrow stromal cells or mesenchymal stem cells
(MSCs) have been shown to differentiate into bone, as well as
cartilage and fat cells [12], which makes them ideal candidates
for developing bone tissue-engineered constructs. It is well
known that CaP materials promote MSCs differentiation down
the osteogenic lineage [13-15] and that surface topography and
particle size have an effect on cell proliferation and
differentiation [16-18].

Hap and B-TCP ceramics are popular scaffold materials in
tissue engineering for stem cell seeding. CaP ceramics, seeded
with stem cells, are a promising approach for better bone tissue
ingrowth. Increasing cell seeding efficiency in a tissue
engineering construct, it is possible to enhance a cellular
activity and tissue formation as well.

In the current study, different treated Hap and B-TCP ceramic
surfaces were used to investigate rabbit mesenchymal stem cell
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attachment. Three various, but simple surface treatment
technologies (sintering, polishing and polishing-thermally
etching) were used. Up to date there is no study, regarding the
effects of Hap and B-TCP surface morphology, treated by
polishing, sintering and polishing-thermally etching, on cellular
response. The aim of the research is to identify morphology of
the implant surfaces, which could enhance cell attachment. The
understanding of impact of surface properties on cells, proteins
and tissue response could give knowledge for development of
dental and orthopaedic implants.

Il. MATERIALS AND METHODS

A. Preparation of Calcium Phosphates Powders

Calcium phosphate powders were prepared by a wet
chemical precipitation method using calcium oxide (Fluka,
Germany) and ortophosphoric acid (Sigma-Aldrich, Germany)
as raw materials. The process can be described by the following
reactions:

CaO + H,0 — Ca(OH)» 1)
10C&(OH)2+6H3PO4 — Calo(PO4)e(OH)2 + 18H,0 (2)

This method has been characterized by a simple process, low
cost, easy application in industrial production and water is the
only by-product. The method is found to be highly dependent
on the selected technological parameters, such as reagents,
impurity content, concentration of reagents, mixing conditions,
pH and temperature. The raw material was calcined at 1000 °C
for 1 h to obtain pure CaO, then distilled water was added to
gain Ca(OH); suspension with concentration 0.15 M (1). The
precipitation reaction was carried out at 45 °C for Hap or
ambient temperature for B-TCP production. The 2 M
phosphoric acid solution was added slowly into the calcium
hydroxide solution (2). The mixture was stirred for 1 h, after the
end pH value (8.7 for Hap or 6.0 for B-TCP) was obtained, then
aged for 20h at room temperature. Lower synthesis
temperature and acidic pH values promote formation of 3-TCP
phase, but slightly alkaline pH and higher temperature promote
formation of Hap phase. Varying these parameters, it is possible
to obtain a calcium phosphate product with diverse phase
composition. Thereafter filtered precipitates were dried at
105 °C for 24 h. The as-synthesized powder was heat treaded at
1100 °C for 1 h to establish phase and chemical purity.

B. Examination of Calcium Phosphate Powders

The phase composition and chemical purity of Hap and
B-TCP powders were investigated using X-ray diffractometry
(XRD) and Fourier transform infrared spectroscopy (FTIR).
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XRD analysis was carried out with PANalytical X’Pert Pro, Cu
Kal, 40 kV, 30 mA. FTIR analysis was performed with Varian
Scimitar 800 in the wavenumber range of 4000400 cm™.

C. Preparation of Ceramic Samples

Obtained as-synthesized powders were uniaxially pressed
into pellets (d = 10 mm, H = 3 mm). All samples were sintered
at 1100 °C for 1 hour. Unpolished, polished and thermally
etched samples were used for investigation of stem cell
attachment. Polished ceramic samples were prepared by
polishing with 6 pm, 1 pum, 0,25 um diamond paste and cleaned
in the ultrasonic bath using deionized water for 1 min. Thermal
etching was carried out at 1000 °C for 4 min, to reveal the grain
boundaries of matrix grains after polishing. Hap and
B-TCP pellets were steam sterilized in an autoclave at 121 °C
for 30 min.

D. Examination of Ceramic Samples

For the scanning electron microscopy (SEM) samples with a
thin layer of gold was prepared using gold sputter coater
(Emitech K550X, QUORUM TECHNOLOGIES Company)
with a sputtering rate of 7 nm/min applying 25 mA current. The
total gold coating thickness was approximately 14 nm.
Micrographs were obtained using Mira\\LMU Schottky-
Emission electron gun SEM (TESCAN Company) at an
accelerating voltage of 15 kV and magnification of 3,000 x. The
double detector system was used.

Cells were fixed in 2.5 % glutaraldehyde and dehydrated
with increasing concentrations of acetone (50 %, 60 %, 70 %,
80 %, 90 %) for 10 minutes each concentration, then samples
were dried in critical point dryer (Polaron, OM-E3000,
QUORUM TECHNOLOGIES Company) for 1 hour in CO;
medium.

The density and porosity of the samples were determined
using the Archimedes’ method.

E. Mesenchymal Cell Isolation and Culture

The rabbit mesenchymal cells were isolated using enzymatic
digestion with collagenase type Xl (Sigma) and seeded for
expansion in  Dulbecco’s Modified Eagle Medium
(DMEM)/10 % fetal bovine serum (FBS) in standard culture
conditions (37 °C, 95 % relative humidity, and 5 % CO,). Cells
were  passaged by trypsinizing  (0.05%  trypsin/
ethylenediaminetetraacetic acid (EDTA)) and subcultured at a
density of 4000 cells/cm? — 5000 cells/cm?. For all experiments
cells between the third and fifth passage were used. On average
70000 cells were seeded onto the Hap and B-TCP ceramic
pellets one day prior further use.

I11. RESULTS AND DISCUSSION

The X-ray diffraction patterns of the synthetic calcium
phosphate powders show the phase composition after thermal
treatment in 1100 °C for 1 hour (Fig. 1). The sharp peaks
indicate well crystalline calcium phosphate powders. In Fig. 1 A,
HAp phase is represented, and in Fig. 1 B, B-TCP phase can be
seen. All maximums, which are shown in the diffractogrammes,
correspond to pure HAp and pure B-TCP phases. The crystalline
phases detected in the patterns were identified according to

standard patterns from the ICDD — PDF database (No. 9-432
for HAp and No. 55-898 for B-TCP).
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Fig. 1. X-ray diffractometry patterns: A — HAp phase, B — B-TCP phase.
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FTIR analysis shows the characteristic vibrations of chemical
bands of HAp (Fig. 2. A) and B-TCP (Fig. 2. B).
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Fig. 2. FTIR spectra: A — HAp, B — B-TCP.

FTIR spectra show vibration modes of PO4? ions in the
wavenumber range of 550 cm™ — 600 cm?, 962 cm®, 1020 cm? —
1120 cm?, those are typical for HAp and B-TCP. HAp phase can
be confirmed with peaks indicating OH" functional groups
located at wavenumbers of 640 cm™ and 3571 cm'?, denoted with
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arrows (Fig. 2 A). On the contrary, there is no evidence of OH-
groups in Fig. 2. B that proves the existence of pure B-TCP
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Fig. 3. SEM micrographs: A — unpolished B-TCP, B — unpolished HAp, C — polished B-TCP, D — polished HAp, E — polished and thermally etched -TCP,

F — polished and thermally etched HAp.

The microstructural comparison of the prepared samples is
presented in Fig. 3. Sintered and unpolished surfaces of B-TCP
and HAp have similar morphology. It is rounded and relatively
rough with clearly visible grains, see Fig. 3 A and B micrographs.
SEM images C and D demonstrate polished surfaces of both
ceramics. There are no significant differences between B-TCP
and HAp surfaces. There are some grooves resulting from
polishing procedure. However, the microstructural evaluation of
polished and then thermally etched samples (Fig. 3. E and F)
reveals the structure of grains. Results indicate that B-TCP
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ceramic (Fig. 3. E) has larger grains (Day= 587 nm) compared to
HAp ceramic (Day= 566 nm) (Fig. 3. F), which is according to
literature [19]. In E and F images, it can be seen that B-TCP
microstructure is denser, while HAp microstructure has some
micropores. The density of B-TCP and HAp ceramics is
2.6 glcm® and 2.2 glcm® respectively. Measurement and
calculation of porosity indicates that total porosity is in range
from 15 % to 17 % for B-TCP and 27 % to 31 % for HAp. The
density and porosity differences could be explained due to
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sintering temperature. B-TCP has a lower sintering temperature
than HAp that agrees with the studies of other authors [20].

TABLE 1
POROSITY AND DENSITY OF 3-TCP AND HAP SAMPLES

Density [g/cm®]  Pogen [%] Petosed [%0]  Protal [%]
B-TCP-np 2.60+0.01 142+04 33+0.2 175+04
B-TCP-p 2.64+0.04 101+22 49+10 149+13
B-TCP-te 2.61+0.01 135+05 29+0.2 16.4+04
HAp-np 2.23+0.07 269+22 40+£05 31.1+21
HAp-p 2.30+0.02 223+03 46+£02 269+0.1
HAp-te 2.25+0.01 242+06 5.0+£07 29.2+0.2

Abbreviations: np — non-polished, p — polished, te — thermally etched

All samples seeded with mesenchymal cells were examined
24 hours after cell seeding on the biomaterial surface. In all
cases (Fig. 4.), morphology of cells differs. On the unpolished
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surface, cells exhibit an indistinct and flattened shape, while on
the polished surface cells have a more rounded shape.
Considering cell shape, thermally-etched samples showed a
relatively worse cell vitality, compared to the cells on the
unpolished and polished surfaces. SEM analysis revealed a
relatively better mesenchymal cell adhesion on the
hydroxyapatite samples than f-tricalcium phosphate samples.
In fact, aggregates of cells were observed, see Fig.3G.
Roohani-Esfahani et al. have investigated the effect of material
surface characteristics on the mesenchymal cell proliferation
and differentiation. They observed that flatter topographies
enhance cell proliferation while rougher, micro-scale
topographies enhance osteogenic differentiation of cells [12].
Although we could not study proliferation and differentiation
as cells were observed already after 24 hours, in accordance
with the reviewed authors” group, it could be concluded that the
rough surface of calcium phosphates was more favourable for
cells in comparison with smoother surfaces.

Fig. 4. SEM images of ceramic samples with mesenchymal stem cells: A — unpolished -TCP, B — unpolished HAp, C — polished B-TCP, D — polished HAp,
E — polished and thermally etched B-TCP, F — polished and thermally etched Hap, G — aggregate of cells on unpolished Hap.
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IV. CONCLUSIONS

As the cells are living organisms, they should connect to each
other to have a possibility of forming a new tissue [21].
Rounded cell morphology indicates that probably cells do not
aim to connect to each other.

The microstructural effect of hydroxyapatite and B-tricalcium
phosphate on rabbit mesenchymal stem cells has been sudied.
SEM investigation revealed the differences between a surface
microstructure of HAp and B-TCP, which are mainly attributed
to grain size, density and porosity. B-TCP has larger grains and
denser microstructure as HAp at the same thermal and surface
treatment conditions.

The current study revealed that material surface features
could influence attachment and morphology of cells. The
smooth surfaces, in this case, polished and polished-thermally
etched, were not favourable for cell attachment, while an
unpolished surface was more suitable for cell application. There
were no scientific differences discovered between droxyapatite
and B-tricalcium phosphate phases regarding mesenchymal cell
attachment and morphology, but it is an important factor that
needs to be taken into account.

The future work will be devoted not only to surface
topography investigation, but also to chemical factors of
biomaterial that could influence cell behavior on the calcium
phosphate scaffolds.
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Vita Zalite, Marina Sokolova, Dmitrijs Jakovlevs, Karlis Rozenbergs, Liga Bérzina-Cimdina. Tru$a mezenhimas §iinu piestiprinasanas
raksturosana uz kalcija fosfatu virsmas

Saja darba tika pétita tru§a mezenhimas §inu piestiprind$anas sp&a un $inu morfologija uz dazadi apstradatam hidroksilapatita (HAp) un
B-trikalcija fosfata (B-TCP) virsmam. Sada pé&tijuma nozimiba saistas ar to, ka ir batiski noskaidrot, kadai jabat implanta virsmai, lai nodroginatu
veiksmigu S§tinu piestiprinasanos, kam velak seko §tinu migracija, proliferacija un diferenciacija. Zinatniskais darbs sevi ietver vairakas dalas:
HAp un B-TCP pulveru sintézi un to analizi ar rentgenstaru difraktometriju un Furjé transformaciju infrasarkano spektroskopiju, HAp un g-TCP
pres€tu paraugu sagatavosanu un to virsmas modific€Sanu, ka ar trusa mezenhimas $tinu iegiiSanu, inkub&Sanu un uznesanu uz HAp un f-TCP
paraugiem. HAp un B-TCP presétu paraugu virsmas ar un bez $tinam tika analiz&tas, izmantojot skengjoSo elektronu mikroskopiju. P&tijuma tika
apskatita neapstradata, puléta un puléta-termiski kodinata HAp un B-TCP keramikas virsma. Bitiskakas keramikas mikrostrukttiras atSkiribas
bija graudu izmérs, jo B-TCP keramikai ir zemaka sakepSanas sakuma temperatiira, kas noved pie lielaka graudu izmera salidzindjuma ar HAp
keramiku, kas termiski apstradata 1100 °C temperatiira, apstrades laiks 1 h. Lidz ar to p-TCP keramikai ir raksturiga blivaka mikrostruktiira.
Eksperimenti ar mezenhimas $tinam paradija, ka tam labvéligaka ir neapstradata keramikas virsma, jo §tinu forma bija plakana un nenoteikta, kas
varétu noradit, ka $ada $una labpratak ,.komunicés” ar citam §inam un saks veidot jaunus audus. Ja §inam ir noapalota forma, tad paredzams, ka
pec laika tas ies boja un jaunu audu veidosanas nenotiks. Petijums paradija, ka mezenhimas $iinas labpratak piestiprinas relativi raupjai materiala
virsmai gan HAp, gan B-TCP keramikas gadijuma. Iegitais rezultats ir labvéligs gadijumos, kad nepiecieSams izgatavot sarezgitas formas un
struktiiras implantus, kuriem nav iesp&jama virsmas apstrade.

Bura 3anure, Mapuna CoxojioBa, [Amutpuii SIxoBiaeBc, Kapiuc Po3zenbeprc, Jiura bep3uns-Llumabinsa. Xapakrepucruka
3aKpernJieHns1 Me3eHXUMAJIbHBIX KJIeTOK KPOJHKA HA MoBepXHOcTH (ocdhaTa kanbuus

B Hacrosme#f Hay4dHON paboTe OblIa M3ydeHa CIIOCOOHOCTH NMPHKPEIUICHUS ME3EHXHMAIBHBIX KIETOK KPOJIMKAa W MOP(OIOTHS KIETOK Ha
pa3nmuuHBIX moBepxHOCTAX runpokcuanartuta (IAIl) u Tpukansimiipocdara (TKD). BakHOCTP Takoro HMCCIIeIOBaHUS CBs3aHA C TEM, YTO
HEOOXOJMMO 3HaTh, KaKOH JOJDKHA OBITH MOBEPXHOCTh MMIUIAHTATa UIS TOTO, YTOOBI OOECTICUNTH YCIEIIHOE MPUKpPEIICHHe KIEeTOK Ul
nanbHeleit murpanuun, nponudepayun U auddepennuanun. Haydnas paboTa BkiIo4aeT B cedsi HECKOJBKO 4YacTel: CHHTE3 MOPOIIKOB
THIPOKCHAIIaTHTa U TpUKaibluidocdarta, UX aHAIH3 METOIOM PEHTICHOBCKOW AM(PPAKTOMETpHU M MH(pakpacHO# cnekrpockonuu Dypee,
MOATOTOBKA MPECCOBAHHBIX 00Pa31I0B ¥ MOIU(UKANNS UX HOBEPXHOCTH, a TAK)KE MONTyYeHHE ME3CHXUMANBHBIX KIETOK KPOJIMKA, UX HHKYOAIHs
n HaHeceHue Ha 00pasisl ATl u TK®. [TosepxHocTs npeccoBanHbix ['AIl 1 TK® 06pa3noB ¢ kieTkamu 1 6e3 KIETOK OblIa MpoaHaIH3upOBaHa
C TIOMOIIBI0 CKaHUPYIOIIETO IEKTPOHHOTO MHKPOCKOMa. B mporiecce nccinenoBanus OBUTH pacCMOTPEHB! He0OpaOOTaHHEIE, TOIMPOBAHHEIE U
TepMUYecKH - mojrpoBaHHble TpasieHble ['All u TK® kepammudeckne moBepxHocTH. Hambomee CymecTBEHHBIM OTIIMYHEM MHUKPOCTPYKTYPBI
KepaMHKH OBLT pa3Mep 3epHa, Tak Kak HadaibHas Temieparypa crexanus TK® kepaMukn Hike, 9TO IPUBOJNT K OOJIBIINM pa3MepaM 3epHa Mo
cpaBHeHnto ¢ ['AIl kepammkoit mpu TepmooOpadorke 1100 °C (1 wac). CmemomarensHo, TK® kepammka XapakTepusyercs IDIOTHOM
MHKPOCTPYKTYPOi. DKCHEPUMEHTHI ¢ ME3eHXUMAIbHBIMH KJICTKaMH ITOKa3aJIH, ITO camasi OaronpusTHas — 3To HeoOpaboTaHHas KepaMHUJecKast
MOBEPXHOCTh, MOTOMY 4TO (hopMa KJIETOK ObUIa IUIOCKOW M HEONpeNeNIeHHOH, YTO B CBOIO OYepeab O3HA4aeT, YTO Takas KJIETKa MPEArodTeT
"o6mmarkca" ¢ APYrUMHU KIIETKaMU M HAUHET CTPOUTH HOBYIO TKaHb. ECIIM KJIETKH HMEIOT OKPYTITyI0 (OpMY, TOTa 0)KUIAETCS, YTO CO BpEMEHEM
OHM OyIyT pa3pylleHbl, a 00pa30BaHMs HOBBIX TKaHEH He mpou3oiiaer. ViccnenoBaHus MoKa3any, 4YTO Me3eHXUMaJIbHbIE KJIETKH IPEIIOYUTAIOT
LETIATHCS K OTHOCUTENBHO Ipy0oii moBepxHOCTH MaTepuana — Takxe B ciayuae ['AIl u TK® kepamuku. [lonyueHHbIH pe3yabTaT OaronpusaTeH
B ClIydae, Korja HeoOXOJUMO IOJydeHHe MMIUIAHTATOB CIOKHBIX (JOPM M KOHCTPYKIMH, KOTOpHIE HE IO3BOJSIOT NPOBOXUTH 0OpabOTKy
MIOBEPXHOCTH.

27



