Latvijas minerālās izejvielas eko-keramikas izstrādei

Gaida Sedmale, Māris Rundāns, Mārtiņs Randers, Ingunda Šperberga, Andris Cimmers

Abstract


Darbā dots ieskats par iespējām izmantot Latvijas minerālās izejvielas kā bāzi vai  piedevu  keramikas  materiālu  (eko-materiālu)  izstrādei ar dažādu pielietošanas aspektu, to skaitā parādīt iespēju šo materiālu ieguves tehnoloģisko procesu optimizēšanai virzībā uz to apdedzināšanas temperatūras samazināšanu, līdz ar to reducējot kaitīgu gāzveida izmešu nonākšanu vidē. Parādīti darbu rezultāti laika periodā no 2007. g. līdz 2017. g. Tiek apskatīti un analizēti sekojoši pētījumi:

  • neapstrādāta māla pielietošana atkritumu deponēšanas vietu noblīvēšanai;
  • daļēji dehidratizēta māla pielietošana Cr3+, Cr6+, Zn2+ un Cu+ jonu sorbcijai, kas veidojas galvanisko procesu notekūdeņos; poru saturošas augsttemperatūras keramikas izstrāde no jauktiem izejvielu maisījumiem, kas nodrošina pietiekamu gāzveida fāzes izveidošanos keramikas apdedzināšanas procesā, veidojot poras, lai pielietotu par filtrēšanas/attīrīšanas materiālu;
  • illīta māla piedevu izmantošana, lai pazeminātu augsttemperatūras blīvas keramikas saķepināšanas/apdedzināšanas temperatūru, iegūstot ilgspējīgu mehāniski un termiski izturīgu produktu; kā arī tehnoloģiskie procesi, kas nodrošina porainas, siltumu izolējošas keramikas materiāla ieguvi pie pazeminātām temperatūrām (ģeopolimēru metode).

Mineral Raw Materials of Latvia for Development of Eco-Ceramics

The paper gives an insight into the possibilities to use Latvian mineral raw materials as a base or additives for the development of ceramic materials (eco- materials) with different application aspects, including showing the possibility of optimizing the technological processes of these materials towards the reduction of their firing temperature, thereby reducing the release of harmful gaseous effluents into the environment.

The results of the works that are reported in the period were obtained from  2007 to 2017. The following studies are reviewed and analyzed: the use of untreated clay for the sealing of waste deposits; the use of partly dehydrated clay for sorption of Cr3+,6+, Zn2+ and Cu2+, which have formed in galvanic processes; the development of porous high temperature ceramics from mixes  of mineral raw materials and synthetic additives that provide a sufficient gas phase  formation in the firing process and consecutively to form pores in obtained ceramic material; the use of illite clay additives to reduce the temperature of sintering of high temperature dense mechanical and thermally durable ceramics, as well as technological processes that ensure the production of porous, heat-insulating ceramic materials at reduced temperatures (geopolymer method).


Keywords:

atkritumu deponēšana; jonu sorbcija; termiskā trieciena izturība; kordierīta keramika

Full Text:

PDF

References


P. Muralt, “Environmentally motivated materials research in ceramics,” In ICC2 Proceedings: Global Roadmap for Ceramics, 2008, p. 6.

K. Halada and R. Yamamoto, “The Current Status of Research and Development on Ecomaterials around the World,” MRS Bulletin, vol. 26, no. 11, pp. 871–879, Nov. 2001. https://doi.org/10.1557/mrs2001.227

O. Umezawa, K. Halada, and Y. Shinohara, “Ecomaterials in the Global Eco-Society: Present Situation and Future Prospects,” Materials Science Forum, vol. 555, pp. 1–7, 2007. https://doi.org/10.4028/www.scientific. net/msf.555.1

G. Sedmale, I. Sperberga, U. Sedmalis, and Z. Valancius, “Formation of high-temperature crystalline phases in ceramic from illite clay and dolomite,” Journal of the European Ceramic Society, vol. 26, no. 15, pp. 3351– 3355, Jan. 2006. https://doi.org/10.1016/j.jeurceramsoc.2005.10.012

G. Sedmale, I.Sperberga, A. Actins, and A. Patmalnieks, “Development of Mullite and Cordierite Crystalline Phases in Ceramic from Mixed Compo- sitions,” In Proc. of 1st Ceramics Congress, Global Roadmap – 2006, p. 8.

G. Sedmale, I. Šperberga, A. Hmeļovs, and A. Celms, “Dabas aizsardzībai motivēti keramikas materiāli, pielietojot Latvijas minerālās izejvielas,” Materiālzinātne un lietišķā ķīmija, vol. 19, pp. 78–87, 2009.

DIN 18130-1:1998-05. Baugrund - Untersuchung von Bodenproben; Bestimmung des Wasserdurchlässigkeitsbeiwerts - Teil 1: Laborversuche.

H. F. McMurdie and F. P. Hall, “Phase Diagrams for Ceramists: Supplement No. 1,” Journal of the American Ceramic Society, vol. 32, no. s1, pp. 154– 164, Dec. 1949. https://doi.org/10.1111/j.1151-2916.1949.tb19765.x

H. A.Торопов, B. Бapзакoв, B. B. Лапин, “Диаграммы состояания силикатных систем,” Leningrad, USSR: Наука, 1972.

W. R. Foster, “Contribution to the Interpretation of Phase Diagrams by Ceramists,” Journal of the American Ceramic Society, vol. 34, no. 5, pp. 151–160, May 1951. https://doi.org/10.1111/j.1151-2916.1951.tb11625.x

J. Beresņeva, and G. Sedmale, “Poru keramika no jauktiem izejvielu maisījumiem,” In 51. RTU Studentu zinātniskās un tehniskās konferences materiāli, 2010, pp. 164–165.

G.Sedmale, U. Sedmalis, I. Šperberga, and A. Korovkins, “Minerālo ize- jvielu pielietošanas pamatojums keramikas produktu un tehnoloģiju izstrādei,” Materiālzinātne un lietišķā ķīmija, vol. 24, pp. 26–29, 2011.

G. Sedmale, I. Kuzņecova, and U. Sedmalis, “Augsttemperatūras poru keramika no jaukta sastāva izejvielu maisījumiem,” Materiālzinātne un lietišķā ķīmija, vol. 26, pp.55–60, 2012.

W. D. Nesse, “Introduction to Mineralogy,” New York, NY: Oxford Univer- sity Press, 2000.

P. Rohan, K. Neufuss, J. Matějíček, J. Dubský, L. Prchlı́k, and C. Holzgartner, “Thermal and mechanical properties of cordierite, mullite and steatite produced by plasma spraying,” Ceramics Interna- tional, vol. 30, no. 4, pp. 597–603, Jan. 2004. https://doi.org/10.1016/j. ceramint.2003.07.004

R. Goren, C. Ozgur, and H. Gocmez, “The preparation of cordierite from talc, fly ash, fused silica and alumina mixtures,” Ceramics International, vol. 32, no. 1, pp. 53–56, Jan. 2006. https://doi.org/10.1016/j. ceramint.2005.01.001

R. Goren, H. Gocmez, and C. Ozgur, “Synthesis of cordierite powder from talc, diatomite and alumina,” Ceramics International, vol. 32, no. 4, pp. 407–409, Jan. 2006. https://doi.org/10.1016/j.ceramint.2005.03.016

ASTM C1525 - 04(2013). Standard Test Method for Determination of Thermal Shock Resistance for Advanced Ceramics by Water Quenching.

J. Zhou, Y. Dong, S. Hampshire, and G. Meng, “Utilization of sepiolite in the synthesis of porous cordierite ceramics,” Applied Clay Science, vol. 52, no. 3, pp. 328–332, May 2011. https://doi.org/10.1016/j.clay.2011.02.001

S. Ferrari, and F. Gualtieri, “The use of illitic clays in the production of stoneware tile ceramics,” Applied Clay Science, vol. 32, no. 1–2, pp. 73–81, Apr. 2006. https://doi.org/10.1016/j.clay.2005.10.001

U. Sedmalis, I. Šperberga, and G. Sedmale, “Simetrija un simetrisku lauku iedarbība,” Riga, Latvia: RTU izdevniecība, 2008.

M. Rundans and I. Sperberga, “Porous Cordierite Ceramics from Natural Clays / Poraina kordierīta keramika no dabiskiem māliem,” Materials Science and Applied Chemistry, vol. 32, no. 1, pp. 33–38, Jan. 2015. https:// doi.org/10.1515/msac-2015-0006

K. J. D. MacKenzie, D. R. M. Brew, R. A. Fletcher, and R. Vagana, “Formation of aluminosilicate geopolymers from 1:1 layer-lattice minerals pretreated by various methods: a comparative study,” Journal of Materials Science, vol. 42, no. 12, pp. 4667–4674, Jan. 2007. https://doi.org/10.1007/ s10853-006-0173-x

G. Sedmale, M. Randers, M. Rundans, and V. Seglins, “Application of differently treated illite and illite clay samples for the development of ceramics,” Applied Clay Science, vol. 146, pp. 397–403, Sep. 2017. https://doi. org/10.1016/j.clay.2017.06.016




DOI: 10.7250/msac-2018-0003

Copyright (c) 2018 Authors

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.