Augsti poraina oksīdu keramika

Visvaldis Švinka, Ruta Švinka

Abstract


Silikātu materiālu institūtā kopš 2004. g. tiek veikti pētījumi par augsttemperatūras augsti porainu oksīdu keramiku, kas iegūta ar koncentrētas oksīdu pulveru suspensijas liešanas paņēmienu. Poru veidošanās notiek ķīmiskas reakcijas ceļā starp metāliska alumīnija pulveri un ūdeni bāziskā vidē, kur suspensijas pH ir 9,5–10,8. Tādā veidā netiek emitēts CO2, kas parasti notiek, iegūstot keramikas materiālus ar paaugstinātu porainību.

Laikā kopš 2007. g. sintezēti materiāli un veikti pētījumi vairākās augsttemperatūras oksīdu sistēmās: cirkonija oksīdu saturošā (promocijas darbs, G. Buļa, Cirkonija oksīdu saturoša augsttemperatūras putu keramika, 2008. g.), korunda- mullīta sistēmā (promocijas darbs, L. Mahņicka-Goremikina, Sintēzes apstākļu un leģējošu piedevu ietekme uz porainas augsttemperatūras oksīdu keramikas īpašībām un struktūru, 2015. g.), alumīnija oksīda sistēmā ar dažādām piedevām (promocijas darbs, I. Zaķe-Tiļuga. Mullītu veidojošu piedevu ietekme uz porainas alumīnija oksīda keramikas īpašībām, 2015. g.; nepabeigts promocijas darbs A. Butlers, Karstumizturīga filtrējoša keramika; maģistra darbs, J. Bobrovika, Augsti poraina siltumizolējoša kordierīta keramika). Pētītie materiāli paredzēti, lai izmantotu tos kā siltumizolējošus materiālus dažādām augsttemperatūras siltuma ierīcēm un arī karstumizturīgiem filtriem.

Highly Porous Oxide Ceramics

Investigations of highly porous high temperature ceramic produced by slip casting from concentrated suspensions of raw materials were carried out in the Institute of Silicate Materials since 2004. Pores form due to chemical reaction of metallic aluminium powder with water in basic medium with pH 9.5–10.8. Using this method emission of carbon oxide that usually accompanies fabrication of porous ceramics is avoided. The following investigations in high temperature oxide systems have been carried out since 2007:

  • zirconia containing materials – promotion work by Gerda Bula “Zircon oxide containing high temperature foam ceramic”, 2008;
  • corundum–mullite materials – promotion work by Ludmila Mahnicka- Goremikina “Influence of synthesis conditions and additives on the structure and properties of porous high temperature ceramics”, 2015;
  • alumina materials with various additives – promotion work by Ieva Zake-Tiluga “The effect of mullite-forming additives on the properties of porous alumina ceramics”, 2015;
  • titania containing corundum–mullite materials;
  • cordierite ceramic materials.

The goals of these investigations were to obtain of high temperature insulating materials and ceramic filters for filtration of hot and aggressive liquids. Properties of ceramics, such as dependence of thermal conductivity on the temperature and thermal shock durability, were determined.

Keywords: aluminium oxide, zirconium oxide, titanium oxide, kaolin, talcum, cordierite, nanopowders, thermal insulation, thermal shock resistance.


Keywords:

alumīnija oksīds; cirkonija oksīds; titāna oksīds; kaolīns; talks; kordierīts; nanopulveri; siltuma izolācija; termiskā trieciena izturība

Full Text:

PDF

References


G. Buļa, R. Švinka, and V. Švinka, “Refractory foam ceramics from zirconia, alumina and kaolin – preparation and properties,” In Proc. of 10th Int. Conf. of Eur. Ceram. Soc., 2007, pp. 1942–1945.

R. Svinka, V. Svinka, and A. Butlers, “Light weight refractory materials on kaoline and alumina basis,” In Proc. of V Intern. Conf. Refractories, Furnaces and thermal insulations, 2008, pp. 41–47.

T. Juettner, H. Moertel, V. Svinka, and R. Svinka, “Structure of kaoline-alumina based foam ceramics for high temperature application, ”Journal of European Ceramic Society, vol. 27, no. 2, pp. 1435–1441, Dec. 2007. https:// doi.org/10.1016/j.jeurceramsoc.2006.04.029

L. Mahnicka, R. Svinka, and V. Svinka, “Influence of kaolin and firing temperature on the mullite formation in porous mullite-corundum materials,” IOP Conference Series: Materials Science and Engineering, vol. 25, p. 012008, Dec. 2011. https://doi.org/10.1088/1757-899x/25/1/012008

L. Mahnicka, R. Svinka, and V. Svinka, “Properties of porous mullite ceramics doped with MgO and produced by slip casting method,” In Proc. of VII International Scientific Conference ‟ Refractories, Furnaces and Thermal Insulations 2012”, 2012, pp. 130–135.

L. Mahnicka-Goremikina, R. Svinka, and V. Svinka, “Influence of Metal Oxides Additives on the Porous Mullite Ceramics,” Key Engineering Materials, vol. 604, pp. 293–296, Mar. 2014. https://doi.org/10.4028/www. scientific.net/kem.604.293

R. Svinka, V. Svinka, I. Zake, and A. Butlers, “Influence of some additives on the properties of porous alumina ceramic,” Chemine Technologija, vol. 50, no. 1, pp. 51–55.

R. Svinka, V. Svinka, and I. Zake, “Silica containing highly porous alumina ceramic,” IOP Conference Series: Materials Science and Engineering, vol. 18, no. 18, p. 182008, Apr. 2011. https://doi. org/10.1088/1757-899x/18/18/182008

I. Zake, R. Svinka, V. Svinka, and E. Palcevskis, “Alumina lightweight ceramics modified with plasma synthesized nanopowders,” IOP Conference Series: Materials Science and Engineering, vol. 25, p. 012021, Dec. 2011. https://doi.org/10.1088/1757-899x/25/1/012021

I. Zake, R. Svinka, and V. Svinka, “Effect of Various Mullite Precursors on Properties of Porous Alumina-Mullite Ceramics” In Proc. of the International Scientific Conference ‟ Refractories, Furnaces and Thermal Insula- tions”, 2012, pp. 124–129.

I. Zake-Tiluga, R. Svinka, and V. Svinka, “Anisotropy of Compressive Strength in Porous Alumina Ceramics,” Key Engineering Materials, vol. 604, pp. 153–156, Mar. 2014. https://doi.org/10.4028/www.scientific. net/kem.604.153

I. Zake-Tiluga, R. Svinka, and V. Svinka, “Highly porous corundum– mullite ceramics – Structure and properties,” Ceramics International, vol. 40, no. 2, pp. 3071–3077, Mar. 2014. https://doi.org/10.1016/j. ceramint.2013.09.139

I. Zake-Tiluga, V. Svinka, R. Svinka, and L. Grase, “Thermal shock resistance of porous Al2O3-mullite ceramics,” Ceramics International, vol. 41, no. 9, pp. 11504–11509, Nov. 2015. https://doi.org/10.1016/j. ceramint.2015.05.116

I. Zake-Tiluga, V. Svinka, R. Svinka, B. Zierath, P. Greil, and T. Fey, “Thermal conductivity and microstructure characterisation of lightweight alumina and alumina–mullite ceramics,” Journal of the European Ceramic Society, vol. 36, no. 6, pp. 1469–1477, May 2016. https://doi.org/10.1016/j. jeurceramsoc.2015.12.026

R. Svinka, V. Svinka, and J. Bobrovik, “Modification of Porous Cordierite Ceramic,” Key Engineering Materials, vol. 721, pp. 322–326, Dec. 2016. https://doi.org/10.4028/www.scientific.net/kem.721.322

V. Švinka, R. Švinka, A. Butlers, and I. Zaķe, “Keramisks filtrs,” LV Patent LV14078, 20 May, 2010.




DOI: 10.7250/msac-2018-0004

Copyright (c) 2018 Authors

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.