Characterization of Rabbit Mesenchymal Cell Attachment on Calcium Phosphate Surface
Abstract
Keywords: |
Hydroxyapatite, implant surface, mesenchymal cells, β-tricalcium phosphate
|
Full Text: |
References
Lopez-Estebana, S., Saiza, E., Fujinob, S., et al. Bioactive Glass Coatings for Orthopedic Metallic Implants. Journal of the European Ceramic Society, 2003, vol. 23, pp. 2921–2930. http://dx.doi.org/10.1016/S0955-2219(03)00303-0
Ungersbock, A., Rahn, B. Methods to Characterize the Surface Roughness of Metallic Implants. Journal of Materials. Materials in Medicine, 1994, vol. 5, pp. 434-440. http://dx.doi.org/10.1007/BF00058979
Liua, X, Chub, P.K., Ding, Ch. Surface Modification of Titanium, Titanium Alloys and Related Materials for Biomedical Applications. Materials Science and Engineering, 2004, R 47, pp. 49-121.
Liu, D., Savino, K., Yates, M.Z. Coating of Hydroxyapatite Films on Metal Substrates by Seeded Hydrothermal Deposition. Surface & Coatings Technology, 2011, vol. 205, pp. 3975–3986. http://dx.doi.org/10.1016/j.surfcoat.2011.02.008
De Groot, K., Wolke, J.G., Jansen, J.A. Calcium Phosphate Coatings for Medical Implants. Proceedings of the Institution of Mechanical Engineers. Part H, 1998, vol. 212, N 2, pp. 137-147.
Xu, L., Pan, F., Yu, G., Yang, L., Zhang, E., Yang, K. In vitro and In vivo Evaluation of the Surface Bioactivity of a Calcium Phosphate Coated Magensium alloy. Biomaterials, 2009, vol. 30, N 8, pp. 1512-1523. http://dx.doi.org/10.1016/j.biomaterials.2008.12.001
Thanigaiarul, K., Elayaraja, K., Magudapathy, P., et al., Surface Modification of Nanocrystalline Calcium Phosphate Bioceramic by Low Energy Nitrogen Ion Implantation. Ceramics International, 2012, http://dx.doi.org/10.1016/j.ceramint.2012.09.081
Tastepe, C.S., Liu, Y., Visscher, C.M., et al. Cleaning and Modification of Intraorally Contaminated Titanium Discs with Calcium Phosphate Powder Abrasive Treatment. Clinical Oral Implants Research, 2012, http://dx.doi.org/10.1111/j.1600-0501.2012.02536.x
Symietz, Ch., Lehmann, E., Gildenhaar, R., et al. Mechanical Stability of Ti6Al4V Implant Material after Femtosecond Laser Irradiation. Journal of Applied Physics, 2012, vol. 112. http://dx.doi.org/10.1063/1.4737576
Hung, K.-Y., Lo, S.-Ch., Shih, Ch.-Sh., et al. Titanium Surface Modified by Hydroxyapatite Coating for Dental Implants. Surface Coating Technology, 2012. http://dx.doi.org/10.1016/j.surfcoat.2012.03.037
Roohani-Esfahani, S.I., Nouri-Khorasani, S., Lu, Z.F. Modification of Porous Calcium Phosphate Surfaces with Different Geometries of Bioactive Glass Nanoparticles. Materials Science and Engineering: C, 2012, vol. 32, pp. 830–839. http://dx.doi.org/10.1016/j.msec.2012.01.034
García-Gareta, E., Hua, J., Knowles, J.C., et al. Comparison of Mesenchymal Stem Cell Proliferation and Differentiation between Biomimetic and Electrochemical Coatings on Different Topographic Surfaces. Journal of Materials. Materials in Medicine, 2012, http://dx.doi.org/10.1007/s10856-012-4789-x
Ohgushi, H., Dohi, Y., Tamai, S., Tabata, S. Osteogenic Differentiation of Marrow Stromal Stem Cells in Porous Hydroxyapatite Ceramics. Journal of Biomedical Materials Research, 1993, vol. 27, pp. 1401–1407. http://dx.doi.org/10.1002/jbm.820271107
Oreffo, R.O.C., Driessens, F.C.M., Planell, J.A., et al. Growth and Differentiation of Human Bone Marrow Osteoprogenitors on Novel Calcium Phosphate Cements. Biomaterials, 1998, vol. 19, pp. 1845–1854. http://dx.doi.org/10.1016/S0142-9612(98)00084-2
Nishio, K., Neo, M., Akiyama, H., Nishiguchi, S., et al. The Effect of Alkali and Heat treated Titanium and Apatite Formed Titanium on Osteoblastic Differentiation of Bone Marrow Cells. Journal of Biomedical Materials Research, 2000, vol. 52, N 4, pp. 652–61. http://dx.doi.org/10.1002/1097-4636(20001215)52:4<652::AID-JBM9>3.0.CO;2-W
Anselme, K., Bigerelle, M., Noel, B., et al. Qualitative and Quantitative study of Human Osteoblast adhesion on Materials with Various Surface Roughnesses. Journal of Biomedical Materials Research, 2000, vol. 49, N 2, p. 155–166. http://dx.doi.org/10.1002/(sici)1097-4636(200002)49:2<155::aid-jbm2>3.0.co;2-j
Weibenbock, M., Stein, E., Undt, G., et al. Particle Size of Hydroxyapatite Granules Calcified from Red Algae Affects the Osteogenic Potential of Human Mesenchymal Stem Cells in vitro. Cells Tissues Organs, 2006, vol. 182, pp. 79–88. http://dx.doi.org/10.1159/000093062
Chen, F., Lam, W.M., Lin, C.J., et al. Biocompatibility of Electrophoretical Deposition of Nanostructured Hydroxyapatite Coating on Roughen Titanium Surface: in vitro Evaluation Using Mesenchymal Stem Cells. Journal of Biomedical Materials Research, 2007, vol. 82B, pp. 183–191. http://dx.doi.org/10.1002/jbm.b.30720
Kivrak, N. and Cuneyt Tas, A., Synthesis of Calcium Hydroxyapatie-Tricalcium Phosphate (HA-TCP) Composite Bioceramic Powders and Their Sintering Behavior. Journal of American Ceramic Society, 1998, vol. 81, N 9, pp. 2245–2252. http://dx.doi.org/10.1111/j.1151-2916.1998.tb02618.x
Descamps, M., Rguiti, E., Tricoteaux, A., et al. Processing and Properties of Transparent Hydroxyapatite and β-tricalcium Phosphate Obtained by HIP Pocess. Ceramics International, 2013, vol. 39, pp. 283–288. http://dx.doi.org/10.1016/j.ceramint.2012.06.023
Dālmane, A., Histoloģija. Rīga : LU Akadēmiskais apgāds, 2004. 319 lpp.
DOI: 10.7250/msac.2014.004
Copyright (c)