The Effect of Chlorination on Escherichia Coli Viability in Drinking Water
Abstract
Keywords: |
Chlorination, Escherichia coli, inactivation kinetic, viability
|
Full Text: |
References
White, G. C. Handbook of chlorination and alternative disinfectants, New York: John Wiley & Sons, Inc, USA, 1999, 4th edition.
World Health Organization. Guidelines for drinking-water quality 3rd edition incorporating the first and second addenda/ Geneva: WHO Press, 2008.
Linden, K. G., Shin, G. A., Faubert, G., et al. UV disinfection of Giardia lamblia cysts in water. Environmental Science and Technology, 2002, vol. 36, N 11, pp. 2519-2522. http://dx.doi.org/10.1021/es0113403
Shin, G. A., Linden, K. G., Arrowood, M. J., et al. Low – pressure UV inactivation and DNA repair potential Cryptosporidium parvum oocysts. Applied and Environmental Microbiology, 2001, vol. 67, N 7, pp. 3029–3032. http://dx.doi.org/10.1128/AEM.67.7.3029-3032.2001
Environmental Protection Agency. Health Risks from Microbial Growth and Biofilms in Drinking Water Distribution Systems/ EPA, Washington, USA, 2002.
Oliver, JD. Recent findings on the viable but nonculturable state in pathogenic bacteria. FEMS Microbiology Reviews, 2010, vol. 34, N 4, pp. 415–425.
Guo, M., Huang, J., Hu, H., et al. UV inactivation and characteristics after photoreactivation of Escherichia coli with plasmid: health safety concern about UV disinfection. Water Research, 2012, vol. 46, N 13, pp. 4031–4036. http://dx.doi.org/10.1016/j.watres.2012.05.005
Oliver, JD. The viable but nonculturable state in bacteria. The Journal of Microbiology, 2005, vol. 43, pp. 93–100.
Keer, J. T., Birch, L. Molecular methods for the assessment of bacterial viability. Journal of Microbiological Methods, 2003, vol. 53, N 2, pp. 175–183. http://dx.doi.org/10.1016/S0167-7012(03)00025-3
Kogure, K., Simidu, U., Taga, N. A tentative direct microscopic method for counting living marine bacteria. Canadian Journal of Microbiology, 1979, vol. 25, N 3, pp. 415–420. http://dx.doi.org/10.1139/m79-063
Rodríguez, G. G., Phipps, D., Ishiguro, K., et al. Use of a fluorescent redox probe for direct visualization of actively respiring bacteria. Applied and Environmental Microbiology, 1992, vol. 58, N 6, pp. 1801–1808.
Button, D. K., Schut, F., Quang, P., et al. Viability and isolation of marine bacteria by dilution culture: theory, procedures, and initial results. Applied and Environmental Microbiology, 1993, vol. 59, N 9, pp. 881–891.
Servais, P., Agogue, H., Courties, C., et al. Are the actively respiring cells (CTC positive) those responsible for bacterial production in aquatic environment? FEMS Microbiology Ecology, 2011, vol. 35, pp. 171-179. http://dx.doi.org/10.1111/j.1574-6941.2001.tb00801.x
LVS EN ISO 7393-1:200. Water quality – Determination of free chlorine and total chlorine – Part 1: Titrimetric method using N, N-diethyl-1, 4-phenylenediamine/ Riga, Latvia, 2001.
Pavlova, A., Berzina-Cimdina, L., Locs, J., et. al. Preparation and characterization of dense TiO2 ceramics. Advances in Science and Technology, 2008, vol. 54, pp. 261-264. http://dx.doi.org/10.4028/www.scientific.net/AST.54.261
Reimanis, M., Mezule, L., Malers, J., et al. Model water disinfection with electrolysis using TinO2n-1 containing ceramic electrodes. Environmental Biotechnology, 2011, vol. 7, N 1, pp. 34-40.
Ho, L., Onstad, G., Gunten, U., et al. Differences in the chlorine reactivity of four microcystin analogues. Water Research, 2006, vol. 40, N 6, pp. 1200–1209. http://dx.doi.org/10.1016/j.watres.2006.01.030
LeChevallier, M., Cawthon, C., Lee, R. Inactivation of biofilm bacteria. Applied and Environmental Microbiology, 1988, vol. 54, N 10, pp. 2492-2499.
Gunter, U., Driedger, A., Gallard, H., et al. By – products formation during drinking water disinfection: a tool to assess disinfection efficiency? Water Research, 2011, vol. 35, N 8, pp. 2095–2099.
United States Environmental Protection Agency. LT1ESWTR Disinfection Profiling and Benchmarking Technical Guidance Manual, USA, 2003, pp. 93–98.
Tryland, I., Pommepuy, M., Fiksdal, L. Effect of chlorination on β-D-galactosidase activity of sewage bacteria and Escherichia coli. Journal of Applied Microbiology, 1998, vol. 85, N 1, pp. 51–60. http://dx.doi.org/10.1046/j.1365-2672.1998.00465.x
Mezule, L. Significance of nonculturable Escherichia coli in drinking water systems. PhD. thesis. Lambert Academic Publishing, 2012.
Moreno, Y., Piqueres, P., Alonso, J. L., et al. Survival and viability of Helicobacter pylori after inoculation into chlorinated drinking water. Water Research, 2007, vol. 41, N 15, pp.3490–3496. http://dx.doi.org/10.1016/j.watres.2007.05.020
Zhao, T., Doyle, M. P., Zang, P., et al. Chlorine inactivation of Escherichia coli O157: H7 in water. Journal of Food Protection, 2001, vol. 64, N 10, pp. 1607–1609.
Joux, F., LeBaron, P. Ecological implications of an improved direct viable count method for aquatic bacteria. Applied and Environmental Microbiology, 1997, vol. 63, N 9, pp. 3643–3647.
Lee, Y., Nam, S. Reflection on kinetic models to the chlorine disinfection for drinking water production. The Journal of Microbiology, 2002, vol. 40, N 2, pp.119–124.
Creach, V., Baudoux, A., Bertru, G., et al. Direct estimate of active bacteria: CTC use and limitation. Journal of Microbiological Methods, 2003, vol. 52, N 1, pp. 19–28. http://dx.doi.org/10.1016/S0167-7012(02)00128-8
Coallier, J., Prevost, M., Rompre, A., et al. The optimization and application of two direct viable count methods for bacteria in distributed drinking water. Canadian Journal of Microbiology, 1994, vol. 40, pp. 830–836. http://dx.doi.org/10.1139/m94-132
Williams, M. M., Braun-Howland, E. B. Growth of Escherichia coli in model distribution system biofilms exposed to hypochlorous acid or monochloramine. Applied and Environmental Microbiology, 2003, vol. 69, N 9, pp. 5463–5471. http://dx.doi.org/10.1128/AEM.69.9.5463-5471.2003
Yu, F. P., McFeters, G. A. Physiological responses of bacteria in biofilms to disinfection. Applied and Environmental Microbiology, 1994, vol. 60, N 7, pp. 2462–2466.
DOI: 10.7250/msac.2014.008
Copyright (c)