Sola-gēla pārklājums uz emaljēta leģētā tērauda

Ilona Pavlovska, Gundars Mežinskis, Laimons-Paulis Bīdermanis

Abstract


Darbā aprakstītas jauna materiāla un tehnoloģijas izstrādes stadijas saules enerģijas kolektoriem. Augstas jaudas saules enerģijas kolektora (AJSEK) cauruļveida materiālam jāspēj ilgstoši izturēt augstas temperatūras, neizmainot savu mikrostruktūru un nezaudējot savus sākotnējos siltumtehniskos raksturlielumus. RTU Silikātu materiālu institūta zinātnieki sadarbībā  ar LU Cietvielu fizikas institūta speciālistu izstrādājuši tehnoloģiju, kas ļauj iegūt AJSEK saules enerģiju uztverošu materiālu un spēj izturēt 600 °C temperatūru vismaz 250 dienas. Šī materiāla pamatā ir nerūsējošā tērauda cauruļveida iz- strādājums, kuram uzklāts stiklkristālisks emaljas pārklājums. Ilgstošu augsttemperatūras izturību nodrošina ne vien emaljas pārklājuma fritei pievienotās specifiskās piedevas, bet arī emaljai uzklātais sola-gēla nanodaļiņu pārklājums.

Sol-gel coating on enamelled alloy steel

The stages of development of a new material and a technology for solar  collectors are described. Pipes for parabolic-trough solar collectors (PTSC) must be able to withstand high temperatures for a long time without changing their microstructure and losing their original thermal characteristics. The scientists from the Institute of Silicate Materials (Riga Technical University) together with a specialist from the Institute of Solid State Physics (University of Latvia) have developed a technology that allows the production of PTSC solar-absorbing materials capable of withstanding 600 °C temperatures for at least 250 days. This material is based on glass-crystalline enamel coating on tubular stainless steel pipes. The high-temperature resistance was ensured not only by specific additives added to the frit of enamel coating, but also by a nanosized sol-gel coating over the enamel.

Keywords – enamel coatings for steel, sol-gel coatings, thermal properties, chemical properties, microhardness


Keywords:

emaljas pārklājumi tēraudam; sola-gēla pārklājumi; termiskās īpašības; ķīmiskā izturība; mikrocietība

Full Text:

PDF

References


W. Glaubitt and P. Löbmann, “Antireflective coatings prepared by sol– gel processing: Principles and applications,” Journal of the European Ceramic Society, vol. 32, no. 11, pp. 2995–2999, Aug. 2012. https://doi. org/10.1016/j.jeurceramsoc.2012.02.032

J. Wang, J. Ge, H. Hou, M. Wang, G. Liu, G. Qiao, and Y. Wang, “Design and sol–gel preparation of SiO2/TiO2 and SiO2/SnO2/SiO2 –SnO2 multilayer antireflective coatings,” Applied Surface Science, vol. 422, pp. 970–974, Nov. 2017. https://doi.org/10.1016/j.apsusc.2017.06.133

D. Wang and G. P. Bierwagen, “Sol–gel coatings on metals for corrosion protection,” Progress in Organic Coatings, vol. 64, no. 4, pp. 327–338, Mar. 2009. https://doi.org/10.1016/j.porgcoat.2008.08.010

R.-G. Hu, S. Zhang, J.-F. Bu, C.-J. Lin, and G.-L. Song, “Recent progress in corrosion protection of magnesium alloys by organic coatings,” Progress in Organic Coatings, vol. 73, no. 2–3, pp. 129–141, Feb. 2012. https://doi.org/10.1016/j.porgcoat.2011.10.011

R. Figueira, I. Fontinha, C. Silva, and E. Pereira, “Hybrid Sol-Gel Coatings: Smart and Green Materials for Corrosion Mitigation,” Coatings, vol. 6, no. 4, p. 12, Mar. 2016. https://doi.org/10.3390/coatings6010012

L. Pinho, F. Elhaddad, D. S. Facio, and M. J. Mosquera, “A novel TiO2–SiO2 nanocomposite converts a very friable stone into a self-cleaning building material,” Applied Surface Science, vol. 275, pp. 389–396, Jun. 2013. https://doi.org/10.1016/j.apsusc.2012.10.142

F. Gherardi, A. Colombo, M. D’Arienzo, B. Di Credico, S. Goidanich, F. Morazzoni, R. Simonutti, and L. Toniolo, “Efficient self-cleaning treatments for built heritage based on highly photo-active and well-dispersible TiO2 nanocrystals,” Microchemical Journal, vol. 126, pp. 54–62, May 2016. https://doi.org/10.1016/j.culher.2012.02.006

Ministru kabineta rīkojums Nr. 129. Par Enerģētikas attīstības pamatnostādnēm 2016.-2020. gadam. “Latvijas Vēstnesis”, 32 (5604), 16.02.2016. OP numurs: 2016/32.1

D. A. Baharoon, H. A. Rahman, W. Z. W. Omar, and S. O. Fadhl, “Historical development of concentrating solar power technologies to generate clean electricity efficiently – A review,” Renewable and Sustainable Energy Reviews, vol. 41, pp. 996–1027, Jan. 2015. https://doi.org/10.1016/j. rser.2014.09.008

Å. Andersson, O. Hunderi, and C. G. Granqvist, “Nickel pigmented anodic aluminum oxide for selective absorption of solar energy,” Journal of Applied Physics, vol. 51, no. 1, pp. 754–764, Jan. 1980. https://doi. org/10.1063/1.327337

K. Vignarooban, X. Xu, A. Arvay, K. Hsu, and A. M. Kannan, “Heat transfer fluids for concentrating solar power systems – A review,” Applied Energy, vol. 146, pp. 383–396, May 2015. https://doi.org/10.1016/j. apenergy.2015.01.125

C. Atkinson, C. L. Sansom, H. J. Almond, and C. P. Shaw, “Coatings for concentrating solar systems – A review,” Renewable and Sustainable Energy Reviews, vol. 45, pp. 113–122, May 2015. https://doi.org/10.1016/j. rser.2015.01.015

C. A. Arancibia-Bulnes, C. A. Estrada, and J. C. Ruiz-Suárez, “Solar absorptance and thermal emittance of cermets with large particles,” Journal of Physics D: Applied Physics, vol. 33, no. 19, pp. 2489–2496, Sep. 2000. https://doi.org/10.1088/0022-3727/33/19/320

R. Karmhag, T. Tesfamichael, G. A. Niklasson, E. Wäckelgård, and M. Nygren, “Oxidation kinetics of nickel solar absorber nanoparticles,” Journal of Physics D: Applied Physics, vol. 34, no. 3, pp. 400–406, Jan. 2001. https://doi.org/10.1088/0022-3727/34/3/325

H. J. Brown-Shaklee, W. Carty, and D. D. Edwards, “Spectral selectivity of composite enamel coatings on 321 stainless steel,” Solar Energy Materials and Solar Cells, vol. 93, no. 8, pp. 1404–1410, Aug. 2009. https://doi.org/10.1016/j.solmat.2009.03.009

K. Valleti, D. M. Krishna, P. M. Reddy, and S. V. Joshi, “High temperature stable solar selective coatings by cathodic arc PVD for heat collecting elements,” Solar Energy Materials and Solar Cells, vol. 145, pp. 447–453, Feb. 2016. https://doi.org/10.1016/j.solmat.2015.11.012

H. D. Liu, Q. Wan, Y. R. Xu, C. luo, Y. M. Chen, D. J. Fu, F. Ren, G. Luo, X. D. Cheng, X. J. Hu, and B. Yang, “Long-term thermal stability of CrAlO-based solar selective absorbing coating in elevated temperature air,” Solar Energy Materials and Solar Cells, vol. 134, pp. 261–267, Mar. 2015. https://doi.org/10.1016/j.solmat.2014.12.009

K. Malnieks, G. Mezinskis, I. Pavlovska, L. Bidermanis, and A. Pludons, “Optical, photocatalytical and structural properties of TiO2 – SiO2 sol-gel coatings on high content SiO2 enamel surface,” Materials Science, vol. 21, no. 1, Mar. 2015. https://doi.org/10.5755/j01.ms.21.1.5188

А. Петцольд, Г. Пешманн, Эмаль и эмалирование. Москва, СССР: Металлургия, 1990.

L. Bīdermanis, J. Eiduks, P. Paukšs, “Emalja tēraudam,” PSRS aut.apl. Nr. 391082, MKL CO3C 704, 1973.

L. Bīdermanis, J. Liepiņš, G. Mežinskis, A. Cimmers, I. Pavlovska, “Masa emalju tipa pārklājumam uz tērauda,” LR Patents LV14401 B.Jnt.Cl.C03C 8/00, C23D 5/00, 2011.

J. Liepiņš, L. Bīdermanis, G. Mežinskis, I. Pavlovska, A. Cimmers, L. Lindiņa, “Masa stikla-kristāliskas emaljas pārklājumam uz tērauda,” LR Patents LV14504 B.Int.Cl C03C 8/00, C2390 1/00, 2012.

L. Bīdermanis, J. Liepiņš, G. Mežinskis, I. Pavlovska, A. Cimmers, L. Lindiņa, “Masa kristāliskas emaljas pārklājumam uz tērauda,” LR Patents LV14646A. Int.Cl C03C 8/00, 2013.

Eiropas patents EP 2 871 168 (B1) Mass of silicate enamel coating on steel. G. Mezinskis, L. Bidermanis, I. Pavlovska, A. Cimmers, J. Liepins, K. Malnieks, J. Gabrusenoks. Publ. 21.12. 2016.

J. Kalnačs, V. Grehovs, G. Mežinskis, and L. Bidermanis, “A Calorimetric Method for Determination of Heat Capacity of Ceramics for Concentrated Solar Thermal Systems / Skenējošās Kalorimetrijas Metode Siltumietilpības Noteikšanai Saules Kolektoru Keramikā,” Latvian Journal of Physics and Technical Sciences, vol. 50, no. 5, Jan. 2013. https://doi.org/10.2478/lpts-2013-0034

I. Pavlovska, K. Malnieks, G. Mezinskis, L. Bidermanis, and M. Karpe, “Hard TiO2–SiO2 sol–gel coatings for enamel against chemical corrosion,” Surface and Coatings Technology, vol. 258, pp. 206–210, Nov. 2014. https://doi.org/10.1016/j.surfcoat.2014.09.027

K. Malnieks, G. Mezinskis, and I. Pavlovska, “Effect of Different Dip- Coating Techniques on TiO2 Thin Film Properties,” Key Engineering Materials, vol. 721, pp. 128–132, Dec. 2016. https://doi.org/10.4028/www. scientific.net/kem.721.128

G. Mezinskis, I. Pavlovska, K. Malnieks, L. Bidermanis, A. Cimmers, and P. Onufrijevs, “Sol-gel coated enamel for steel: 250 days of continuous high-temperature stability,” Ceramics International, vol. 43, no. 3, pp. 2974–2980, Feb. 2017. https://doi.org/10.1016/j.ceramint.2016.11.060

G. Mezinskis, L. Bidermanis, I. Pavlovska, K. Malnieks, D. Larionova, and A. Zukuls, “High Silica Containing Enamels with Sol-Gel Films for Stain- less Steel,” In 7th Baltic Conference on Silicate Materials BaltSilica Book of Abstracts, 2016, p. 40.

K. Malnieks, G. Mezinskis, I. Pavlovska, and L. Bidermanis, “Enamel as High Temperature Solar Light Receiver,” In 6th Baltic Conference on Silicate Materials BaltSilica Book of Abstracts, 2014, p. 45.

K. Malnieks, G. Mezinskis, I. Pavlovska, L. Bidermanis, and A. Pludons, “Black enamel for concentrated solar-power receivers,” Ceramics International, vol. 40, no. 8, pp. 13321–13327, Sep. 2014. https://doi.org/10.1016/j.ceramint.2014.05.046




DOI: 10.7250/msac-2018-0010

Copyright (c) 2018 Authors

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.