Pašattīroši audumi: kas tie ir un kāpēc tādi nepieciešami?

Raivis Eglītis, Gundars Mežinskis, Ieva Buiķe

Abstract


Pašattīroši audumi ir tekstilmateriāli, kuriem piemīt  spēja  ārēju vides faktoru iedarbībā atbrīvot savu virsmu no dažādiem piesārņojumiem. Šādi audumi ļauj samazināt ūdens un enerģijas patēriņu, kas saistīts ar drēbju mazgāšanu, samazināt infekciju risku, pateicoties to biocīdām īpašībām, kā arī pasargā cilvēkus no UV starojuma. Papildus tam šādus audumus arī būtu grūtāk saslapināt; tas mūsdienu mitrajā klimatā samazinātu diskomfortu no salijušām drēbēm. Šādus efektus pašattīroši audumi iegūtu ar tādiem mehānismiem kā fotokatalīze un superhidrofobitāte. Lai audumi iegūtu augstāk minētās īpašības, piemērotākie ir ZnO un TiO2 nanodaļiņu veidotie pārklājumi. Savukārt pārklājumu ieguvei jāizmanto sola-gēla metode, kas sniedz iespēju izveidot homogēnus pārklājumus pie temperatūrām, kuras iztur organiskas dabas materiāli. Kopš 2011. gada ar šādu audumu izstrādi ir nodarbojies Rīgas Tehniskās universitātes Dizaina tehnoloģiju institūts. Kopš 2016. gada ar šādiem pārklājumiem nodarbojas arī Rīgas Tehniskās universitātes Silikātu materiālu institūtā. Izmantojot savas gadu desmitu laikā iegūtās zināšanas sola-gēla tehnoloģijā un nanostrukturētu pārklājumu ieguvē, sekmīgi uzsākti pētījumi rūpnieciski izmantojamu tehnoloģiju izstrādei kokvilnas audumiem.

Self-Cleaning Fabrics: What Are They and How Are They Used?

Self-cleaning fabrics are textile materials, which under the influence of various external environmental factors have the ability to rid their surface from various contaminants. Such fabrics make it possible to reduce water and energy consumption associated with washing clothes, to reduce the risk of infections due to their biocidal properties, and to protect people from UV radiation. In addition, such fabrics would also be more difficult to wet. This would reduce the possibility of wet clothes in damp climates. Such effects by self-cleaning fabrics could be achieved through mechanisms of photocatalysis and superhydrophobicity. To develop textiles with above mentioned properties, the most suitable approach is the deposition of coatings formed by ZnO and TiO2 nanoparticles. In turn, the sol-gel method should be used to obtain coatings. This would make it possible to create homogeneous coatings at temperatures that organic materials can withstand. Institute of Design Technologies, Riga Technical University, has been working on the development of such fabrics since 2011. The research in the field of such coatings at the Institute of Silicate Materials, Riga Technical University, has been performed since 2016. Thanks to decades long research in sol-gel technology and nanostructured coatings, the development of commercially available technologies for cotton fabrics has been successfully launched at the Institute of Silicate Materials.

Keywords: self-cleaning fabrics, sol-gel method, TiO2, ZnO


Keywords:

pašattīroši audumi; sola-gēla metode; TiO2; ZnO

Full Text:

PDF

References


P. M. Hawkey, “The origins and molecular basis of antibiotic resistance,” BMJ, vol. 317, no. 7159, pp. 657–660, Sep. 1998. https://doi.org/10.1136/ bmj.317.7159.657

J. Allen, “Ultraviolet Radiation: How It Affects Life on Earth,” earthobservatory.nasa.gov, Sep. 2, 2001. [Online]. Available: https://earthobservatory.nasa.gov/Features/UVB/. [Accessed: May 1, 2017].

M. Carlowicz, “New Simulation Shows Consequences of a World Without Earth’s Natural Sunscreen,” nasa.gov, Mar. 18, 2009 [Online]. Available: https://www.nasa.gov/topics/earth/features/world_ avoided.html. [Accessed: May 1, 2017].

J. Hu, Active coatings for smart textiles. Amsterdam, the Netherlands: Woodhead Publishing, 2016.

M. M. G. Fouda, “Antibacterial Modification of Textiles Using Nanotechnology,” in A Search for Antibacterial Agents, Sep. 2012. https://doi. org/10.5772/45653

M. F. Ashby, P. J. Farreira, and D. L. Schodek, Nanomaterials, Nanotechnologies and Design. Amsterdam, the Netherlands: Elsevier, 2009. https://doi. org/10.1016/b978-0-7506-8149-0.x0001-3

D. Staneva, D. Atanasova, E. Vasileva-Tonkova, V. Lukanova, and I. Grabchev, “A cotton fabric modified with a hydrogel containing ZnO nanoparticles. Preparation and properties study,” Applied Surface Science, vol. 345, pp. 72–80, Aug. 2015. https://doi.org/10.1016/j.apsusc.2015.03.141

L. Lopez, W. A. Daoud, and D. Dutta, “Preparation of large scale photocatalytic TiO2 films by the sol–gel process,” Surface and Coatings Technology, vol. 205, no. 2, pp. 251–257, Oct. 2010. https://doi.org/10.1016/j. surfcoat.2010.06.028

H. E. Emam, A. P. Manian, B. Široká, H. Duelli, P. Merschak, B. Redl, and T. Bechtold, “Copper(I)oxide surface modified cellulose fibers—Synthesis, characterization and antimicrobial properties,” Surface and Coatings Technology, vol. 254, pp. 344–351, Sep. 2014. https://doi.org/10.1016/j. surfcoat.2014.06.036

I. Perelshtein, G. Applerot, N. Perkas, E. Wehrschuetz-Sigl, A. Hasmann, G. Guebitz, and A. Gedanken, “CuO–cotton nanocomposite: Formation, morphology, and antibacterial activity,” Surface and Coatings Technology, vol. 204, no. 1–2, pp. 54–57, Sep. 2009. https://doi.org/10.1016/j. surfcoat.2009.06.028

Y. L. Lam, C. W. Kan, and C. W. M. Yuen, “Effect of metal oxide on antimicrobial finishing of cotton fabric,” BioResources, vol. 7, no. 3, pp. 3960– 3983, 2012.

B. Xu, Z. Cai, W. Wang, and F. Ge, “Preparation of superhydrophobic cotton fabrics based on SiO2 nanoparticles and ZnO nanorod arrays with subsequent hydrophobic modification,” Surface and Coatings Technology, vol. 204, no. 9–10, pp. 1556–1561, Jan. 2010. https://doi.org/10.1016/j.surfcoat.2009.09.086

R. Dastjerdi and M. Montazer, “A review on the application of inorganic nano-structured materials in the modification of textiles: Focus on antimicrobial properties,” Colloids and Surfaces B: Biointerfaces, vol. 79, no. 1, pp. 5–18, Aug. 2010. https://doi.org/10.1016/j.colsurfb.2010.03.029

W. A. Daoud and J. H. Xin, “Nucleation and Growth of Anatase Crystallites on Cotton Fabrics at Low Temperatures,” Journal of the American Ceramic Society, vol. 87, no. 5, pp. 953–955, May 2004. https://doi. org/10.1111/j.1551-2916.2004.00953.x

M. Montazer and E. Pakdel, “Functionality of nano titanium dioxide on textiles with future aspects: Focus on wool,” Journal of Photochemistry and Photobiology C: Photochemistry Reviews, vol. 12, no. 4, pp. 293–303, Dec. 2011. https://doi.org/10.1016/j.jphotochemrev.2011.08.005

E. Pakdel, W. A. Daoud, L. Sun, and X. Wang, “Photostability of wool fabrics coated with pure and modified TiO2 colloids,” Journal of Colloid and Interface Science, vol. 440, pp. 299–309, Feb. 2015. https://doi. org/10.1016/j.jcis.2014.10.032

M. Radetić, “Functionalization of textile materials with TiO2 nanoparticles,” Journal of Photochemistry and Photobiology C: Photochemistry Reviews, vol. 16, pp. 62–76, Sep. 2013. https://doi.org/10.1016/j. jphotochemrev.2013.04.002

M. I. Mejía, J. M. Marín, G. Restrepo, C. Pulgarín, E. Mielczarski, J. Mielczarski, Y. Arroyo, J.-C. Lavanchy, and J. Kiwi, “Self-cleaning modified TiO2–cotton pretreated by UVC-light (185nm) and RF-plasma in vacuum and also under atmospheric pressure,” Applied Catalysis B: Environmental, vol. 91, no. 1–2, pp. 481–488, Sep. 2009. https://doi.org/10.1016/j.apcatb.2009.06.017

A. Bozzi, T. Yuranova, I. Guasaquillo, D. Laub, and J. Kiwi, “Self-cleaning of modified cotton textiles by TiO2 at low temperatures under daylight irradiation,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 174, no. 2, pp. 156–164, Aug. 2005. https://doi.org/10.1016/j. jphotochem.2005.03.019

O. Galkina, “Functional hybrid bionanomaterials based on titanium dioxide and cellulose, possessing antibacterial and drug delivery properties,” licentiate thesis, Swedish University of Agricultural Sciences, Uppsala, Sweden, 2015.

K. T. Meilert, D. Laub, and J. Kiwi, “Photocatalytic self-cleaning of modified cotton textiles by TiO2 clusters attached by chemical spacers,” Journal of Molecular Catalysis A: Chemical, vol. 237, no. 1–2, pp. 101–108, Aug. 2005. https://doi.org/10.1016/j.molcata.2005.03.040

R. N. Wijesena, N. D. Tissera, R. Perera, K. M. Nalin de Silva, and G. A. J. Amaratunga, “Slightly carbomethylated cotton supported TiO2 nanoparticles as self-cleaning fabrics,” Journal of Molecular Catalysis A: Chemical, vol. 398, pp. 107–114, Mar. 2015. https://doi.org/10.1016/j.molcata.2014.11.012

Kaihong Qi, Xiaowen Wang, and J. H. Xin, “Photocatalytic self-cleaning textiles based on nanocrystalline titanium dioxide,” Textile Research Journal, vol. 81, no. 1, pp. 101–110, Nov. 2010. https://doi.org/10.1177/0040517510383618

M. Abid, S. Bouattour, D. S. Conceição, A. M. Ferraria, L. F. Vieira Ferreira, A. M. Botelho do Rego, M. R. Vilar, and S. Boufi, “Hybrid cotton–anatase prepared under mild conditions with high photocatalytic activity under sunlight,” RSC Advances, vol. 6, no. 64, pp. 58957–58969, 2016. https://doi.org/10.1039/c6ra10806g

O. V. Abramov, A. Gedanken, Y. Koltypin, N. Perkas, I. Perelshtein, E. Joyce, and T. J. Mason, “Pilot scale sonochemical coating of nanoparticles onto textiles to produce biocidal fabrics,” Surface and Coatings Technology, vol. 204, no. 5, pp. 718–722, Dec. 2009. https://doi.org/10.1016/j. surfcoat.2009.09.030

Ş. S. Uğur, M. Sarıışık, A. H. Aktaş, M. Ç. Uçar, and E. Erden, “Modifying of Cotton Fabric Surface with Nano-ZnO Multilayer Films by Layer-by- Layer Deposition Method,” Nanoscale Research Letters, vol. 5, no. 7, pp. 1204–1210, May 2010. https://doi.org/10.1007/s11671-010-9627-9

H. Gaminian and M. Montazer, “Enhanced Self-Cleaning Properties on Polyester Fabric Under Visible Light Through Single-Step Synthesis of Cuprous Oxide Doped Nano-TiO2,” Photochemistry and Photobiology, vol. 91, no. 5, pp. 1078–1087, Jul. 2015. https://doi.org/10.1111/php.12478

A. Ojstršek, K. S. Kleinschek, and D. Fakin, “Characterization of nanosized TiO2 suspensions for functional modification of polyester fabric,” Surface and Coatings Technology, vol. 226, pp. 68–74, Jul. 2013. https://doi. org/10.1016/j.surfcoat.2013.03.037

D. Fakin, K. Stana Kleinschek, M. Kurečič, and A. Ojstršek, “Effects of nanoTiO2–SiO2 on the hydrophilicity/dyeability of polyester fabric and photostability of disperse dyes under UV irradiation,” Surface and Coatings Technology, vol. 253, pp. 185–193, Aug. 2014. https://doi.org/10.1016/j.surfcoat.2014.05.035

H. Gaminian and M. Montazer, “Simultaneous nano TiO2 sensitization, application and stabilization on polyester fabric using madder and NaOH producing enhanced self-cleaning with hydrophilic properties under visible light,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 332, pp. 158–166, Jan. 2017. https://doi.org/10.1016/j.jphotochem.2016.08.022

D. Mihailović, Z. Šaponjić, M. Radoičić, T. Radetić, P. Jovančić, J. Nedeljković, and M. Radetić, “Functionalization of polyester fabrics with alginates and TiO2 nanoparticles,” Carbohydrate Polymers, vol. 79, no. 3, pp. 526– 532, Feb. 2010. https://doi.org/10.1016/j.carbpol.2009.08.036

M. Radetić, “Functionalization of textile materials with TiO2 nanoparticles,” Journal of Photochemistry and Photobiology C: Photochemistry Reviews, vol. 16, pp. 62–76, Sep. 2013. https://doi.org/10.1016/j.jphotochemrev.2013.04.002

D. Pasqui and R. Barbucci, “Synthesis, characterization and self-cleaning properties of titania nanoparticles grafted on polyester fabrics,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 274, pp. 1–6, Jan. 2014. https://doi.org/10.1016/j.jphotochem.2013.08.017

T. Harifi and M. Montazer, “A review on textile sonoprocessing: A special focus on sonosynthesis of nanomaterials on textile substrates,” Ultrasonics Sonochemistry, vol. 23, pp. 1–10, Mar. 2015. https://doi.org/10.1016/j. ultsonch.2014.08.022

T. Harifi and M. Montazer, “A robust super-paramagnetic TiO2:Fe3O4:Ag nanocomposite with enhanced photo and bio activities on polyester fabric via one step sonosynthesis,” Ultrasonics Sonochemistry, vol. 27, pp. 543–551, Nov. 2015. https://doi.org/10.1016/j.ultsonch.2015.04.008

R. Dastjerdi, M. Montazer, and S. Shahsavan, “A new method to stabilize nanoparticles on textile surfaces,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 345, no. 1–3, pp. 202–210, Aug. 2009. https://doi.org/10.1016/j.colsurfa.2009.05.007

Z. Komeily-Nia, M. Montazer, and M. Latifi, “Synthesis of nano copper/ nylon composite using ascorbic acid and CTAB,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 439, pp. 167–175, Dec. 2013. https://doi.org/10.1016/j.colsurfa.2013.03.003

S. Vihodceva and S. Kukle, “Natural Textile Surface Modification Using Sol-Gel Technique,” Material Science, vol. 6, pp. 6–11, 2011.

S. Vihodceva and S. Kukle, “Thin Coatings on the Raw Cotton Textile Deposited by the Sol-Gel Method,” Material Science, vol. 7, pp. 69–73, 2012.

S. Vihodceva and S. Kukle, “Cotton Fabric Surface Modification by Sol- Gel Deposition of ZnO Thin Films,” IOP Conference Series: Materials Science and Engineering, vol. 38, p. 012022, Aug. 2012. https://doi. org/10.1088/1757-899x/38/1/012022

S. Vihodceva and S. Kukle, “Cotton textile surface investigation before and after deposition of the ZnO coating by sol-gel method,” Journal of Nano- and Electronic Physics, vol. 5, no. 1, pp. 1–5, 2013.

S. Vihodceva and S. Kukle, “Improvement of UV Protection Properties of the Textile from Natural Fibres by the Sol-gel Method,” IOP Conference Series: Materials Science and Engineering, vol. 49, p. 012022, Dec. 2013. https://doi.org/10.1088/1757-899x/49/1/012022

S. Vihodceva, S. Kukle, and J. Bitenieks, “Durable hydrophobic sol-gel finishing for textiles,” IOP Conference Series: Materials Science and Engineering, vol. 77, p. 012023, Mar. 2015. https://doi.org/10.1088/1757-899x/77/1/012023

S. Vihodceva, S. Kukle, and O. Muter, “Antimicrobial Properties of the Modified Cotton Textiles by the Sol-Gel Technology,” Advanced Materials Research, vol. 1117, pp. 213–216, Jul. 2015. https://doi.org/10.4028/www.scientific.net/amr.1117.213

Z. Zelca, S.Vihodceva, and S. Kukle, “Sol–gel coating processing optimization for natural fibres,” Proceedings of the Estonian Academy of Sciences, vol. 66, 4, pp. 467-472, 2017. https://doi.org/10.3176/proc.2017.4.25

B. Xu and Z. Cai, “Fabrication of a superhydrophobic ZnO nanorod array film on cotton fabrics via a wet chemical route and hydrophobic modification,” Applied Surface Science, vol. 254, no. 18, pp. 5899–5904, Jul. 2008. https://doi.org/10.1016/j.apsusc.2008.03.160

M. J. Uddin, F. Cesano, F. Bonino, S. Bordiga, G. Spoto, D. Scarano, and A. Zecchina, “Photoactive TiO2 films on cellulose fibres: synthesis and characterization,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 189, no. 2–3, pp. 286–294, Jun. 2007. https://doi.org/10.1016/j.jphotochem.2007.02.015

Y. Kotani, A. Matsuda, M. Tatsumisago, T. Minami, T. Umezawa, and T. Kogure, “Formation of anatase nanocrystals in sol-gel derived TiO2- SiO2 thin films with hot water treatment,” Journal of Sol-Gel Science and Technology, vol. 19, no. 1–3, pp. 585–588, 2000. https://doi.org/10.1023/A:1008709210723

E. Pakdel and W. A. Daoud, “Self-cleaning cotton functionalized with TiO2/SiO2: Focus on the role of silica,” Journal of Colloid and Interface Science, vol. 401, pp. 1–7, Jul. 2013. https://doi.org/10.1016/j.jcis.2013.03.016

V. Mečņika, M. Hoerr, A. Schwarz, and I. Krieviņš, “Smart textiles for healthcare: applications and technologies,” In Proc. 7th International Scientific Conference “Rural Environment. Education. Personality”, 2014, pp. 7–8.

V. Etacheri, C. Di Valentin, J. Schneider, D. Bahnemann, and S. C. Pillai, “Visible-light activation of TiO2 photocatalysts: Advances in theory and experiments,” Journal of Photochemistry and Photobiology C: Photochemistry Reviews, vol. 25, pp. 1–29, Dec. 2015. https://doi.org/10.1016/j. jphotochemrev.2015.08.003

J. Wen, X. Li, W. Liu, Y. Fang, J. Xie, and Y. Xu, “Photocatalysis fundamentals and surface modification of TiO2 nanomaterials,” Chinese Journal of Catalysis, vol. 36, no. 12, pp. 2049–2070, Dec. 2015. https://doi.org/10.1016/s1872-2067(15)60999-8

J. Zhang, P. Zhou, J. Liu, and J. Yu, “New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2,” Physical Chemistry Chemical Physics, vol. 16, no. 38, pp. 20382–20386, Aug. 2014. http://dx.doi.org/10.1039/C4CP02201G

P. Papadopoulos, L. Mammen, X. Deng, D. Vollmer, and H.-J. Butt, “How superhydrophobicity breaks down,” Proceedings of the National Academy of Sciences, vol. 110, no. 9, pp. 3254–3258, Feb. 2013. https://doi.org/10.1073/pnas.1218673110

R. Eglītis and G. Mežinskis, “Comparison of treatments of a cotton fabric modified with a low-temperature TiO2 coating,” Proceedings of the Estonian Academy of Sciences, vol. 66, no. 4, p. 473, 2017. https://doi.org/10.3176/proc.2017.4.21




DOI: 10.7250/msac-2018-0011

Copyright (c) 2018 Authors

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.